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ABSTRACT
Background Orbital inflammatory disease (OID) 
encompasses a wide range of pathology including 
thyroid- associated orbitopathy (TAO), granulomatosis 
with polyangiitis (GPA), sarcoidosis and non- specific 
orbital inflammation (NSOI), accounting for up to 
6% of orbital diseases. Understanding the underlying 
pathophysiology of OID can improve diagnosis and help 
target therapy.
Aims To test the hypothesis that shared signalling 
pathways are activated in different forms of OID.
Methods In this secondary analysis, pathway analysis 
was performed on the previously reported differentially 
expressed genes from orbital adipose tissue using 
patients with OID and healthy controls who were 
characterised by microarray. For the original publications, 
tissue specimens were collected from oculoplastic 
surgeons at 10 international centres representing four 
countries (USA, Canada, Australia and Saudi Arabia). 
Diagnoses were independently confirmed by two 
masked ocular pathologists (DJW, HEG). Gene expression 
profiling analysis was performed at the Oregon Health 
& Science University. Eighty- three participants were 
included: 25 with TAO, 6 with orbital GPA, 7 with orbital 
sarcoidosis, 25 with NSOI and 20 healthy controls.
Results Among the 83 subjects (mean (SD) age, 52.8 
(18.3) years; 70% (n=58) female), those with OID 
demonstrated perturbation of the downstream gene 
expressions of the IGF- 1R (MAPK/RAS/RAF/MEK/ERK 
and PI3K/Akt/mTOR pathways), peroxisome proliferator- 
activated receptor-γ (PPARγ), adipocytokine and AMPK 
signalling pathways compared with healthy controls. 
Specifically, GPA samples differed from controls in 
gene expression within the insulin- like growth factor- 1 
receptor (IGF- 1R, PI3K- Akt (p=0.001), RAS (p=0.005)), 
PPARγ (p=0.002), adipocytokine (p=0.004) or AMPK 
(p=<0.001) pathways. TAO, sarcoidosis and NSOI 
samples were also found to have statistically significant 
differential gene expression in these pathways.
Conclusions Although OID includes a heterogenous 
group of pathologies, TAO, GPA, sarcoidosis and NSOI 
share enrichment of common gene signalling pathways, 
namely IGF- 1R, PPARγ, adipocytokine and AMPK. 
Pathway analyses of gene expression suggest that other 
forms of orbital inflammation in addition to TAO may 
benefit from blockade of IGF- 1R signalling pathways.

INTRODUCTION
The pathogenesis of orbital inflammatory disease 
(OID) is uncertain. In the most well- studied OID, 
thyroid- associated orbitopathy (TAO), the orbital 
fibroblast appears to be a key effector cell and coex-
presses insulin- like growth factor- 1 receptor (IGF- 
1R) and thyroid- stimulating hormone receptor 
(TSHR).1 2 IGF- 1R is a tyrosine kinase receptor and 
TSHR is a G protein- coupled receptor. Both are 
upregulated in TAO orbital fibroblasts especially in 
active disease.3 4 There is evidence that these two 
cell surface receptors are closely associated and can 
synergistically regulate overlapping downstream 
signalling pathways.3 5

Activation of these receptors results in a signal-
ling cascade including the MAPK/Ras/Raf/MEK/
ERK and PI3K/Akt/mTOR pathways leading to 
increased hyaluronic acid synthesis, adipogenesis 
and production of inflammatory cytokines culmi-
nating in clinical TAO.2–7 A fully human mono-
clonal IGF- 1R antagonist antibody, teprotumumab, 
has recently been approved by the US Food and 
Drug Administration (FDA) for the treatment of 
patients with TAO.8 9

In addition to the IGF- 1R pathway, de novo 
adipogenesis is often enhanced in TAO via the 
peroxisome proliferator- activated receptor-γ 
(PPARγ) pathway.1–3 PPARγ, a nuclear transcrip-
tion factor, is a potent stimulator for adipogenesis 
in TAO through increasing proliferation of orbital 
fibroblasts and facilitating their differentiation into 
adipocytes.2 3 PPARγ expression is significantly 
increased in orbital tissue of patients with active 
TAO.1 4

Messenger RNA (mRNA) signatures (gene 
expression profiling) have been previously shown 
to differentiate TAO from other forms of orbital 
inflammation.10–14 For example, using molecular 
profiling, a subset of patients initially thought to 
have non- specific orbital inflammation (NSOI) was 
suggested to actually manifest a limited form of 
granulomatosis with polyangiitis (GPA).11 12 Despite 
previous studies demonstrating unique gene expres-
sion signatures among different OID, the shared 
gene expression pathways have not yet been charac-
terised. To this end, we aimed to identify enriched 
gene expression pathways in various forms of OID 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
. 

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 Ju

n
e 10, 2025

 
h

ttp
://b

jo
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

26 F
eb

ru
ary 2021. 

10.1136/b
jo

p
h

th
alm

o
l-2020-318330 o

n
 

B
r J O

p
h

th
alm

o
l: first p

u
b

lish
ed

 as 

http://bjo.bmj.com
http://orcid.org/0000-0001-7306-4556
http://orcid.org/0000-0001-6357-8019
http://orcid.org/0000-0001-8490-9219
http://crossmark.crossref.org/dialog/?doi=10.1136/bjophthalmol-2020-318330&domain=pdf&date_stamp=2022-06-09
http://bjo.bmj.com/


1013Verma R, et al. Br J Ophthalmol 2022;106:1012–1017. doi:10.1136/bjophthalmol-2020-318330

Clinical science

via microarray analyses and evaluated for shared pathways 
among TAO, GPA, sarcoidosis and NSOI. This information may 
assist in the expansion of known therapies and the creation of 
novel therapeutic targets used to treat orbital inflammation.

MATERIALS AND METHODS
This study was approved by the Institutional Review Board 
(IRB) at Oregon Health & Science University (IRB00006301) 
and at each of the other contributing centres. Methods for the 
microarray analysis of transcripts from orbital adipose tissue 
biopsies have been described elsewhere.11 13 In brief, formalin- 
fixed, paraffin- embedded orbital adipose tissue biopsies were 
obtained from healthy controls (n=20) and patients with TAO 
(n=25), orbital GPA (n=6), orbital sarcoidosis (n=7) and NSOI 
(n=25) based on clinical and histopathological information 
provided by the respective oculoplastic surgeons and ocular 
pathologists in the Orbital Inflammatory Disease Consortium. 
Samples were obtained from North America (Oregon, Cali-
fornia, Ohio, Wisconsin, North Carolina, New York, Florida 
and British Columbia), Australia and Saudi Arabia. Histopatho-
logical diagnoses were determined independently by two ocular 
pathologists (DJW and HEG) masked to the clinical diagnosis. 
In all cases, the consensus diagnosis obtained by DJW and JTR 
based on the histopathology reports and the clinical data agreed 
with the contributing centre’s diagnosis. Tissue samples were 
collected and processed at two different time points, which 
were used as discovery and validation sets. There was only one 
sarcoidosis sample in the discovery set, which was excluded 
from reliability analysis due to the small number of sarcoidosis 
tissue samples available. Gene expression was quantified using 
GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, 
Santa Clara, California, USA) which can analyse the expression 
levels of over 38 000 human genes. The subjects within the TAO, 
GPA, NSOI groups were divided into a discovery and a vali-
dation test set to ascertain if the differentially expressed genes 
found in the former were reproducible in the latter. This is an 
important step to avoid bias in classifying relationships when the 
number of candidate predictors (eg, mRNA transcript types) is 
greater than the number of cases (eg, tissue samples) such as with 
microarray datasets. Threshold criteria was defined as probe 
sets containing at least 1.5- fold change (FC) in gene expression 
compared with healthy controls and a false discovery rate (FDR) 
adjusted p value <0.05 in both sets.11 13 15 16

Upstream signalling pathways associated with these differ-
entially expressed transcripts were identified to assess whether 
these genes participated in the biological cascade of OID more 
than by chance. Both the Reactome programme (http://reactome. 

org) and the NIH Database for Annotation, Visualisation and 
Integrated Discovery (DAVID) programme querying the KEGG 
(Kyoto Encyclopedia of Genes and Genomes) database were 
used to identify pathways for functional enrichment.17–19 Since 
FDR, a multiple testing correction, was applied to the previously 
reported differentially expressed gene lists and the test statistics 
of pathway enrichment based on the lists were not independent, 
we report marginal p values in this paper.

RESULTS
Among the 83 subjects, the mean (SD) age was 52.8 (18.3) years, 
and 58 (70%) subjects were female (table 1). Orbital adipose 
tissue biopsies were obtained from patients with OID including 
25 with TAO, 6 with orbital GPA, 7 with orbital sarcoidosis and 
25 with NSOI, each of which were compared with tissues from 
20 healthy controls who underwent blepharoplasty or enucle-
ation with non- inflamed orbits. All groups comprised of samples 
from a majority of female subjects: 76% of TAO, 67% of GPA, 
71% of sarcoidosis, 64% of NSOI and 70% of healthy controls 
were female, and there was no statistically significant difference 
in female ratios across the groups (χ²=0.893, p=0.944).

Of the 25 subjects with TAO, the median time from ocular 
symptoms onset to biopsy was 40 months (range 1–432 months, 
figure 1). One subject was biopsied at 1 month of TAO onset 
with eight biopsied between 1 and 2 years, none in year 3, five at 
year 4 and five at >5 years from disease onset. Nineteen (76%) 
had a history of hyperthyroidism, one (4%) had hypothyroidism, 
three (12%) were euthyroid and two (8%) did not have thyroid 
status. One hundred per cent of those who reported a reason for 
surgery (n=20) stated their reason as ‘symptomatic relief ’. The 
median time from onset of ocular symptoms to biopsy in GPA 
was 5 months (range 1–10 months) with sarcoidosis at 8 months 
(range 2–19) and NSOI at 9 months (range 0.3–444 months, 
figure 1).

Differentially expressed genes (>1.5 FC and FDR p<0.05) 
were previously reported between each of four OID groups 
relative to healthy controls.11 13 To explore the biological 
functions of these genes, functional annotation and pathway 
analyses using the KEGG database in DAVID and the Reac-
tome databases were performed (figure 2, online supple-
mental figures 1–4, table 2). Orbital fat from controls came 
from either the anterior orbit or the retrobulbar region. Gene 
expression in adipose tissue might differ based on tissue loca-
tion. Accordingly, we tested the hypothesis that our results 
were affected or skewed by combining results for gene expres-
sion from two distinct locations. Healthy controls were segre-
gated into blepharoplasty and enucleation groups and gene 

Table 1 Age and sex for each experimental group

Diagnosis

Overall Set 1 Set 2

N

Mean age Female

N

Mean age Female

N

Mean age Female

AT biopsy (SD) % AT biopsy (SD) % AT biopsy (SD) %

TAO 25 51.6±14.0 76 14 54.0±14.7 79 11 48.6±13.0 73

GPA 6 40.2±12.2 67 4 43.4±14.3 75 4* 40.0±13.9 50

Sarcoidosis 7 45.8±12.0 71 1 60.6‡ 100 7† 48.8±14.7 71

NSOI 25 50.4±23.5 64 14 44.0±21.8 64 11 58.5±24.1 64

Normal 20 63.6±14.5 70 14 61.0±15.6 64 6 69.7±9.8 83

*Two repeated from set 1.
†One repeated from set 1
‡Excluded from reliability analysis
GPA, granulomatosis with polyangiitis; NSOI, non- specific orbital inflammation; TAO, thyroid- associated orbitopathy.
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expressions were analysed separately. There was overlap in 
the multidimensionalscaling (MDS) plot between the anterior 
and retrobulbar orbital adipose tissue groups without distinct 
clusters (online supplemental figure 5). This was confirmed 
by pairwise comparisons which demonstrated no significantly 
different genes between these groups using FDR <0.05. In 

all four OID groups, however, there was a greater number of 
differentially expressed gene transcripts associated with IGF- 
1R, PPARγ, adipocytokine and adenosine monophosphate- 
activated protein kinase (AMPK) signalling pathways when 
compared with healthy controls (p<0.05 in all pathways, 
table 2). These were among the top signalling pathways 
enriched in each individual OID group.

The differentially expressed gene transcripts identified within 
the IGF- 1R pathway were associated with cellular functions 
such as cell survival (ie, FasL), cell growth, apoptosis (ie, Nore1, 
Mst1), protein synthesis, cytoskeletal remodelling/organisation 
(ie, ABL), cell motility (ie, PAK) and endocytosis (RAB5, online 
supplemental figures 1 and 2). In contrast, the differentially 
expressed transcripts identified within the PPARγ signalling 
pathway were involved in adipocyte differentiation (ie, Peril-
ipin, ADIPO, aP2) and gluconeogenesis (ie, PEPCK, figure 2). 
Within the adipocytokine signalling pathway, there was differen-
tial expression of cytokine tumour- necrosis factor (TNF) and the 
adipocytokines leptin and adiponectin known to be associated 
with growth and reproduction, energy metabolism, and insulin 
resistance (online supplemental figure 3). Within the AMPK 
signalling pathway—which intersects the IGF- 1R, PPARγ and 
adipocytokine pathways—differentially expressed proteins were 
those involved in fatty acid biosynthesis (FAS), mitochondrial 
biogenesis (FOXO), protein synthesis (eEF2K) and gluconeogen-
esis (G6Pase, online supplemental figure 4).

Overall, while shared signalling pathways were found to be 
perturbed in all four forms of OID, their specific gene signatures 
differed (figure 2, online supplemental figures 1–4).

DISCUSSION
Gene expression patterns have the potential to assist with diag-
nosis, clarify pathogenesis and tailor choice of therapy. Under-
standing the molecular pathogenesis of orbital inflammation and 
regulation of the immune system can lead to the development 
of tailored biotherapeutics. Our prior studies demonstrate that 

Figure 1 Time in months from ocular symptom onset to biopsy in 
the OID groups. Asterisks indicate outlying data points: 5 samples in 
TAO: 85, 96, 102, 120, 432 months; four samples in NSOI: 60, 72, 96, 
444. All pairwise differences of median time of biopsy were statistically 
significant by the Mann- Whitney U test except between GPA and 
sarcoidosis. GPA, granulomatosis with polyangiitis; NSOI, non- specific 
orbital inflammation; TAO, thyroid- associated orbitopathy.

Figure 2 Differential gene expression in the PPARγ receptor signalling pathways. (A) TAO. (B) GPA. (C) Sarcoidosis. (D) NSOI. Upregulation 
(red) or downregulation (green) illustrates increase or decrease of gene expression in the specific OID compared with controls. The pathway 
diagrams with differential gene expression were created with BioRender.com. https://david.ncifcrf.gov/kegg.jsp?path=hsa03320$PPAR_signaling_
pathway&termId=550028694&source=kegg. OID, orbital inflammatory disease.
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these biological signatures can be harnessed to differentiate 
forms of orbital inflammation.10–14 Looking closer at the mRNA 
expression in orbital biopsies, we now identify potential shared 
pathways that are involved in various types of OID. All four 
OID groups demonstrated perturbation of the IGF- 1R, PPARγ, 
adipocytokine and AMPK signalling pathways. Although they 
mostly exhibited downregulation of these pathways (illustrated 
in green in figure 2, online supplemental figures 1–4), the inter-
active nature of a pathway such as reduced gene expression of 
one gene in an effort to mitigate increased expression of another 
gene means that downregulation implicates a pathway just as 
upregulation does.20 21 Thus, it is more appropriate to conclude 
that there is a functional relationship between these differen-
tially expressed genes. Targeting these pathways in OID may 
translate into viable therapeutic options.

Earlier this year, teprotumumab, an IGF- 1R antagonist, 
gained FDA approval to treat TAO. This drug has been shown to 
decrease clinical signs of TAO including proptosis and increase 
quality of life.8 9 Further studies will determine if drug response 
can be predicted using gene expression and how treatment would 
in turn impact gene expression. Assessing biochemical markers 
may help to optimise the dosage and timing of therapy for OID. 
This personalised approach to medicine could minimise adverse 
effects, maximise response rate and may prove to be more cost- 
effective. Pathway analyses of transcriptomics suggest that forms 
of orbital inflammation in addition to TAO may be associated 
with the alteration of signalling pathways downstream of the 
IGF- 1R and may also benefit from blockade of the IGF- 1R.

IGF- 1R inhibitors were originally investigated over the past 
four decades for the treatment of cancer.22–29 The only other 
FDA approved IGF- 1R inhibitor is ceritinib (Zykadia, Novartis 
Pharmaceuticals Corporation), indicated for the treatment of 
anaplastic lymphoma kinase- positive metastatic non- small cell 
lung cancer. While teprotumumab demonstrated robust clinical 
response in therapeutic trials for TAO, the response was neither 
universal nor uniform. A potential explanation is that compen-
satory signalling pathways may overcome or bypass the IGF- 1R 
blockade. For instance, crosstalk among the IGF- 1R, PPARγ, 
adipocytokine and AMPK biological signalling pathways may be 
contributory to disease pathogenesis.30–33 Our findings suggest 
that there is a network of activated pathways in OID and that 
multifocal signal modulation therapy may decrease bypass mech-
anisms of resistance and amplify the effects of a single inhibitor.

Adipose tissue, in contrast to a variety of other tissues, 
expresses the highest levels of PPARγ, and its activation induces 
adipogenesis.34 Though not clinically proven, case reports 
provide examples of exacerbation of proptosis and reactivation 
of orbital disease in patients with euthyroid TAO taking PPARγ 
agonists prescribed to manage their type 2 diabetes.35 36 In 
orbital preadipocytes obtained from patients with TAO, PPARγ 

agonists have been shown to increase adipogenesis by 2 to 
13- fold, whereas PPARγ antagonists reduce adipogenesis by 
two to sevenfold compared with untreated preadipocytes from 
patients with TAO.35 The reduction in adipogenesis is not seen 
in terminally differentiated adipocytes, suggesting that this 
effect and its potential therapeutic benefit may only exist in the 
active phase of TAO.37 Our study is also the first to suggest that 
in addition to TAO, GPA, sarcoidosis and NSOI share enrich-
ment of the PPARγ signalling pathway. Multiple investigational 
PPARγ antagonists are in the preclinical stages of development. A 
high- throughput screen of FDA approved drugs discovered that 
imatinib (Gleevec, Novartis Pharma AG), an anticancer medi-
cation, acts as a PPARγ antagonist.38 Further studies in patients 
with TAO and other OID would be needed to demonstrate the 
therapeutic efficacy and safety of PPARγ antagonists.

The pathologic activation of PPARγ in GPA, sarcoidosis and 
NSOI suggests that adipocytes may be involved in their patho-
genesis as previously demonstrated in TAO. Additionally, our 
study identified the activation of the adipocytokine signalling 
pathway in all OID groups. Orbital fat is predominantly white 
adipose tissue (WAT) composed of adipocytes, adipose stem 
cells, fibroblasts, macrophages, leucocytes and endothelial 
cells.39 Beyond its function in energy storage, WAT is demon-
strating functionality as a major endocrine and immunologic 
organ. Adipocytes can produce adipocytokines such as leptin 
and resistin which have been linked to the production of inflam-
matory cytokines: TNF, interleukin- 6 (IL- 6) and IL- 12.40 41 
Activation of the adipocytokine pathway also activates AMPK 
which increases cellular energy production which may facilitate 
inflammation.42 Tocilizumab, a humanised anti- IL- 6 receptor 
antibody, has been demonstrated to improve inflammation in 
active TAO.43 The use of anti- TNF agents has also been associ-
ated with subjective improvement in active TAO in case reports 
and small case series.44–46 These biologics, however, are likely 
targeting redundant genes or pathways and therefore have not 
been shown to modify the disease course.

It is also important to note that the TAO samples were 
obtained mainly from patients undergoing decompression more 
than 3 years after the onset of orbital symptoms and when clini-
cally stable. The teprotumumab clinical trials limited enrolment 
to within 9 months after the onset of TAO based on the hypoth-
esis that IGF- 1R upregulation would be most amenable to ther-
apeutic modification during this interval. However, our data 
suggest that IGF- 1R and PPARγ upregulation persists during 
the presumed clinically stable, noninflammatory phase. This 
activation provokes consideration of its clinical significance and 
warrants further study to determine if the therapeutic window 
for TAO can be expanded to include late stage orbitopathy with 
an appropriate inhibitor.47

Table 2 Gene signalling pathway in each experimental group

PI3K- Akt 
pathway 
genes* P value

RAS pathway 
genes* P value

PPARγ pathway 
genes* P value

Adipocytokine 
pathway genes* P value

AMPK pathway 
genes* P value

TAO 27 0.049 22 0.010 9 0.026 11 0.004 16 0.002

GPA 41 0.001 28 0.005 13 0.002 13 0.004 26 <0.001

Sarcoidosis 105 <0.001 71 0.001 22 0.001 23 0.048 44 0.001

NSOI 50 0.043 38 0.006 16 0.006 16 0.009 26 0.002

*Number of significantly enriched genes belonging to the pathway compared with normal.
AMPK, adenosine monophosphate- activated protein kinase; GPA, granulomatosis with polyangiitis; NSOI, non- specific orbital inflammation; PPARγ, peroxisome proliferator- 
activated receptor-γ; TAO, thyroid- associated orbitopathy.
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We acknowledge that artefacts can result from multiple statis-
tical comparisons using a relatively small number of cases. To 
offset potential artefacts, two separate datasets for each form 
of OID were utilised to confirm truly differentially expressed 
genes. This was not possible in one OID form (sarcoidosis) given 
its rarity in our orbital disease samples. Second, this was a multi-
national study; although environment can affect gene expres-
sion, the commonality of the signalling pathways in the different 
forms of orbital inflammation studied strengthens the conclu-
sion that they share pathogenetic pathways.

CONCLUSIONS
In conclusion, some of the pathways we have investigated are 
known, IGF- 1R, or suspected, PPARγ, to be altered in TAO. 
However, we have demonstrated that these pathways are also 
enriched in GPA, sarcoidosis and NSOI. Moreover, additional 
enriched signalling pathways including adipocytokine and 
AMPK were identified in all four OID groups. OID is a hetero-
geneous group of disorders, and a clinical need exists for less- 
invasive biomarkers that can identify central signalling pathway 
activation to aid in diagnosis, prognosis, therapeutic selection 
and response monitoring of OIDs. We hope our findings will 
generate hypotheses for future trials to understand and modulate 
the biological mechanisms and clinical sequelae in OID.
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