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ABSTRACT
Background/aims  To improve the accuracy of 
pterygium screening and detection through smartphones, 
we established a fusion training model by blending 
a large number of slit-lamp image data with a small 
proportion of smartphone data.
Method  Two datasets were used, a slit-lamp image 
dataset containing 20 987 images and a smartphone-
based image dataset containing 1094 images. The 
RFRC (Faster RCNN based on ResNet101) model for 
the detection model. The SRU-Net (U-Net based on 
SE-ResNeXt50) for the segmentation models. The open-
cv algorithm measured the width, length and area of 
pterygium in the cornea.
Results  The detection model (trained by slit-lamp 
images) obtained the mean accuracy of 95.24%. The 
fusion segmentation model (trained by smartphone and 
slit-lamp images) achieved a microaverage F1 score of 
0.8981, sensitivity of 0.8709, specificity of 0.9668 and 
area under the curve (AUC) of 0.9295. Compared with 
the same group of patients’ smartphone and slit-lamp 
images, the fusion model performance in smartphone-
based images (F1 score of 0.9313, sensitivity of 0.9360, 
specificity of 0.9613, AUC of 0.9426, accuracy of 
92.38%) is close to the model (trained by slit-lamp 
images) in slit-lamp images (F1 score of 0.9448, 
sensitivity of 0.9165, specificity of 0.9689, AUC of 
0.9569 and accuracy of 94.29%).
Conclusion  Our fusion model method got high 
pterygium detection and grading accuracy in insufficient 
smartphone data, and its performance is comparable to 
experienced ophthalmologists and works well in different 
smartphone brands.

INTRODUCTION
Pterygium is a common fibrovascular degenera-
tion disease featured by a wing-shaped growth of 
conjunctival tissue over the adjacent cornea, usually 
on the nasal side.1 Surgery is the primary treatment 
for pterygium when it invades the corneal area and 
impairs vision.2–4 The restoration of corneal topog-
raphy and the risk of recurrence after surgery are 
closely related to the size of the pterygium,5 6 indi-
cating the importance of pterygium grading.

Usually, most of the complications of pterygium 
can be managed when diagnosed and treated early. 
The global prevalence of pterygium is 12%, with the 

lowest in Saudi Arabia (0.07%) and the highest in 
China (53%).7 However, due to inadequate propa-
ganda and weak healthcare information in remote 
rural areas,8 9 it often results in delayed diagnosis 
and treatment of pterygium, which is liable to cause 
irregular astigmatism, limitation of eye movement, 
vision loss and even blindness.10–13 Moreover, the 
lack of professional ophthalmologists and medical 
equipment such as slit-lamp further gives rise to low 
accuracy in evaluating the progress of pterygium in 
remote areas.14 15 Some recent studies have detected 
and graded pterygium through artificial intelli-
gence methods.16 17 Nevertheless, the dependency 
on slit-lamp images limits their application where 
slit lamps are unavailable. Hence, with tremendous 
universality and portability, smartphones may be 
a good choice to be indispensable personal health 
devices.18 In recent years, the per capita ownership 
of smartphones has increased significantly, even in 
remote and underdeveloped areas.19 With a wide 
variety of sensors and high-resolution cameras, 
smartphones also provide an innovative platform 
for extensive data collection in the future and 
give assistance to early diagnosis and management 
outside the hospital.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ For the lack of a smartphone database, we 
established a fusion model by fusing the 
huge slit-lamp images and a small number of 
smartphone images to enhance the pterygium 
detection and grading accuracy based on 
smartphones.

WHAT THIS STUDY ADDS
	⇒ The fusion model can obtain high detection 
and grading accuracy close to the slit-lamp 
images-based model for pterygium by using 
smartphone images.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our study is conducive to the early detection of 
pterygium using smartphone images and the 
establishment of a database of smartphone 
images in the future.
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Nevertheless, compared with large amounts of high-quality 
slit-lamp images in uniform formats,20 it is a huge challenge 
to collect abundant smartphone images with high-resolution 
appropriate eye position, and full exposure of eyeball, which is 
vital for accurate recognition subsequently due to the limitations 
of privacy and security,21 non-standard photography methods, 
few publicly available standardised data sets and so on. There-
fore, there is an increased demand for new artificial intelligence 
methods to achieve accurate recognition using a small number of 
smartphone images.

In this study, we established an interesting fusion training 
model by fusing slit lamp data and a small amount of smart-
phone data to significantly improve the accuracy of pterygium 
detection and grading, which provides a new idea of training 
sets data collection for accurate smartphone image detection in 
the future.

METHOD
Datasets based on slit-lamp images and smartphone-based 
images
Two datasets were collected using a slit-lamp and smartphone 
for training, validation and testing (table  1). The cobalt blue 
light, slit, overexposure, not looking straight ahead and blurred 
image collected from all subjects were considered low quality. 
Manually selected clear-eye panoramas and looking straight 
ahead were considered eligible images.

The slit-lamp dataset (SLD) was collected from the Xiamen 
Eye Center of Xiamen University and Xiang'an Hospital of 
Xiamen University. After excluding 4651 low-quality images, 
there were 20 987 eligible images (8845 images with pterygium, 
10 096 images with other abnormalities and 2046 images with 
normal corneas).

The smartphone-based dataset (SPB) was collected from the 
Xiamen Eye Center of Xiamen University and Xiang'an Hospital 
of Xiamen University, photoed by HUAWEI, iPhone and Xiaomi 
(the specific models and detailed collecting protocol in online 

supplemental figure S1). After removing 371 low-quality images, 
three smartphone brands finally got 418, 581 and 95 smart-
phone images, respectively, for 1094 smartphone images (563 
images of pterygium, 426 images of other abnormalities and 105 
images of normal corneas).

When training the model, the primary datasets were randomly 
split into the training set (70%) and test set (30%) and verified 
over 40% of the test set as the validation set. Therefore, the 
image in the training/validation set will not appear in the test set.

Pterygium grading
In our study, the primary surgery indicators are the location of 
the pterygium head, corneal limbus and pupillary margin based 
on the study of Maheshwari.22 In general, the average horizontal 
diameter of the cornea is 11.5–12 mm in adults,23 and the pupil 
size is approximately 4 mm in normal light.24 The pterygium was 
graded to three levels (figure 1A) from the SLD and SPB.

In grading pterygium, the length of pterygium invasion of the 
cornea was the primary consideration. In addition, pterygium 
with width >5 mm and an area of the corneal invasion 
>6.25 mm² were also recommended to take into account Grade 
III.25

Detection of pterygium
The SLD was trained as a detection model for detecting 
pterygium in both slit-lamp and smartphone-based images. 
Our detection model used ResNet101 Faster RCNN26 27 for 
the feature extraction (online supplemental figure S2, stage 1). 
The detection model was trained by slit-lamp images from SLD 
called DM. During the training process, the slit-lamp images 
were randomly split into a ratio of 7:3, 14 691 for training and 
6296 for testing. The training set and the test set were randomly 
distributed eye images of normal images, pterygium images and 
other disease images. The mAP (mean average precision), mIoU 

Table 1  Summary of datasets

Datasets

No (detection) No (segmentation and grading)

Images Subjects Pterygium Normal Others Images Grade I Grade II Grade III

Primary datasets

 � SLD 20 987 11 881 8845 2046 10 096 2276 1350 184 742

 � SPB 1094 509 563 105 426 366 136 41 189

Training

 � SLD 14 691 8316 5684 1357 7650 1693 1093 124 476

 � SPB 765 355 381 75 309 118 53 8 57

 � Total, training 15 456 8671 6065 1432 7959 1811 1146 132 533

Validation

 � SLD 2938 1663 1136 254 1548 338 218 25 95

 � SPB 142 71 65 15 62 24 11 2 11

 � Total, validation 3080 1734 1201 269 1610 362 229 27 106

Test

 � SLD 6296 3565 3161 689 2446 583 257 60 266

 � SPB 329 154 182 30 117 248 83 33 132

 � Total, test 6625 3719 3343 719 2563 831 340 93 398

Comparison test

 � SLD N/A N/A N/A N/A N/A 104 64 7 33

 � SPB N/A N/A N/A N/A N/A 104 64 7 33

Information cannot be obtained are marked as ‘N/A’.
N/A, not available; SLD, slit-lamp image dataset; SPB, smartphone-based dataset.
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(mean intersection over union) and mAcc (mean accuracy) are 
used to evaluate the detection accuracy of the detection model.

Segmentation of pterygium and cornea
To accurately segment the pterygium region invading the cornea 
of those images with pterygium symptoms detected from the 
first stage, the SLD and SPB were used to train two segmen-
tation models for segmenting slit-lamp and smartphone-based 
images, respectively. The segmentation models in this study 
were U-Net model28 based on Se-ResNeXt50 (SRU-Net) (online 
supplemental figure S2, stage 2). In this stage, the segmentation 
model was used to segment the cornea (the cornea area also 
includes the part covered by the pterygium) and segment the 
pterygium area. The segmentation models were trained with 
two datasets, SLD and SPB. In total, the SM1, SM2 and SM3 
were trained with SLD, SPB and SLD and SPB, respectively. For 
the training process of SLD, 2276 single pterygium and double 
pterygium images extracted after removing blurred, severely 
exposed and misaligned images were split into a ratio of 7:3, 
1693 for training and 583 for testing. For the training process 
of SPB, 118 smartphone images were used for training. The test 

set contained 248 smartphone images. The training and test set 
consists of normal eye images, pterygium eye images and other 
disease images. The mIoU, mHD (mean hausdorff distance) and 
mPA (mean pixel accuracy) were used as evaluation metrics in 
the segmentation task.

Methods of measurement
The resulting image output from the previous stage was 
processed, and the indicators of the pterygium invading the 
cornea were measured by the open-cv algorithm (online supple-
mental figure S2, stage 3). After segmentation of cornea and 
invading area of the pterygium, we then assessed and graded the 
corresponding level. In the stage, we measured the base width of 
pterygium (WidthP), the length of pterygium (LengthP) and the 
area of pterygium (AreaP) for its risk assessment29 (figure 1B).

By assuming the horizontal corneal diameter as 12 mm for 
each individual, we used the find contour function provided in 
the open-cv toolbox to calculate the pixel length of the hori-
zontal diameter of the cornea. Then, the length of LengthP and 
WidthP were computed by calculating the corresponding ratios 
concerning the horizontal diameter of the cornea. The AreaP 

Figure 1  The grading system for pterygium (A) example of pterygium images in three different grades by the slit-lamp and smartphone. Grade I: 
Between the limbus of the cornea and the midpoint between the limbus of the cornea and the pupil. Grade II: Between the midpoint between the 
limbus of the cornea and the pupil and the limbus of the pupil. Grade III: Exceed the margin of the pupil, or the width >5 mm and the area of the 
cornea invasion >6.25 mm². (B) The parameters of base width, length and area of pterygium.
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was computed based on the number of pixels of the contour of 
the segmented pterygium.

Statistical analysis
The performance of our system for detecting models was eval-
uated by calculating the accuracy, F1 score and area under the 
curve (AUC). The performance of the grading model in grade 
I–III was evaluated by the sensitivity, specificity, accuracy, F1 
score, the receiver operating characteristic curve (ROC) and 
AUC under 95% CIs. The kappa test was performed to eval-
uate the consistency of the diagnostic test, and a kappa value of 
0.61–0.80 was considered significantly consistent. In contrast, a 
kappa value higher than 0.80 were considered highly compat-
ible. Statistical analyses were conducted using Python V.3.7.11. 
For AUC, the AUC curves were plotted to show the system’s 
ability. The ROC curve was created by plotting the ratio of true 
positive cases (sensitivity) against the percentage of false-positive 
cases (1-specificity) using the packages of Scikit-Learn (V.1.0.1) 
and Matplotlib (V.3.3.2). A larger area under the ROC curve 
indicated better performance.

RESULTS
Performance in pterygium detecting and grading
Performance of detecting model
The quantitative performance indicators of DM (the detection 
model), the mAP, mIoU and mAcc were 0.9881, 0.9788 and 
96.60% for SLD, 0.9563, 0.9100 and 95.24% for SPB (online 
supplemental table S1). The experimental results of image detec-
tion and original images based on SLD and SPB are shown in 
online supplemental figure S3. The above results indicated that 
our detection model DM also has high accuracy for pterygium 
images captured by smartphones.

Performance of grading model
In the beginning, the models SM1 and SM2 have used to segment 
smartphone-based images and found that neither of them took 
an ideal performance. The mIoU, mHD, mPA of the models SM1 
and SM2 were 0.7781, 0.3507, 0.8889 and 0.6784, 0.5556, 
0.8317 based on SPB, respectively. Therefore, the training set 
of slit-lamp images and smartphone-based images was used to 
train a new model (SM3) to test SPB, which turned out that the 
performance could reach the model SM1 to test SLD. In this 
study, the slit-lamp images used in SM3 training have a ratio of 
83:17 to the smartphone. Due to the limited number of smart-
phone images, all available smartphone images were added to 
the model training. The mIoU, mHD mPA of the model SM3 

were 0.8169, 0.3139 and 0.9259 based on SPB (table 2). This 
showed that our fusion modelling method was feasible.

Then, the SM3 was chosen as our final segmentation model 
to segment the smartphone-based image and used the open-cv 
algorithm to measure and grade. Using the result of SM1 to test 
SLD as the best standard and achieving a referable microaverage 
F1 score of 0.9118, sensitivity of 0.9201, specificity of 0.9764, 
AUC of 0.9478 and high accuracy (92.11%). The kappa consis-
tency coefficient between the final measurement results and the 
ground truth results was 0.9193. To test SPB using SM3, we 
achieved a referable microaverage F1 score of 0.8981, sensitivity 
of 0.8709, specificity of 0.9668, AUC of 0.9295 and high accu-
racy (88.31%). The kappa consistency coefficient was 0.9086 
(online supplemental table S2). The AUC analysis, ROC and 
confusion matrices of grading are shown in figure 2A–D. The 
appearance of the preprocessed images from SLD and SPB in the 
grading model is shown in online supplemental figure S3.

The above results indicated that our fusion model SM3 
achieved high grading accuracy for smartphone images, whose 
grading accuracy can reach model SM1 to test SLD.

Performance in pterygium grading based on the same group 
of patients’ slit-lamp and smartphone images
To make our results more convincing, we also collected 104 sets 
of images for the test, each containing a slit-lamp image and a 
smartphone-based image from the same patient’s eye. We used 
SM1 to test the slit-lamp images (SLDS) and achieved a referable 
microaverage F1 score of 0.9448, sensitivity of 0.9165, speci-
ficity of 0.9689, AUC of 0.9569 and high accuracy (94.29%). 
The kappa consistency coefficient was 0.8972. We used SM3 
to test the smartphone images of the same patient (SPBS). We 
achieved a referable microaverage F1 score of 0.9313, sensitivity 
of 0.9360, specificity of 0.9613, AUC of 0.9426, high accuracy 
(92.38%) and the kappa consistency coefficient was 0.8521 
(online supplemental table S3). The AUC analysis and ROC of 
grading are shown in figure 2E–H, indicating that SM3’s perfor-
mance in smartphone-based images is close to SM1’s perfor-
mance in slit-lamp images.

Performance in pterygium grading based on images of 
different smartphone brands
To further test the applicability of our model, we collected images 
of the three most popular smartphone brands on the market, 
HUAWEI, iPhone and Xiaomi. The referable microaverage F1 
score, sensitivity, specificity, AUC and accuracy were 0.9549, 
0.8143, 0.9729, 0.9676 and 95.65% by the HUAWEI phone, 
0.9331, 0.8474, 0.9738, 0.9076 and 84.13% by the iPhone 
phone, and 0.9586, 0.8839, 0.9823, 0.9411 and 90.00% by the 
Xiaomi phone, respectively (online supplemental table S4). The 
AUC analysis and ROC are shown in online supplemental figure 
S4. These results showed that the model SM3 performed well in 
images taken from different brands of phones.

Comparison of three experienced ophthalmologists and the 
detecting and grading model
To further verify the diagnostic ability in pterygium detecting 
and grading, three experienced ophthalmologists with more than 
10 years of clinical experience were asked to test independently. 
They marked the portion of the pterygium lesion for each smart-
phone image and then obtained values for the length, width and 
area of the pterygium that invaded the cornea.

We selected 200 images (90 images of pterygium, 37 images 
of normal and 73 images of other abnormalities) as the dataset 

Table 2  Performance of three different segmentation models based 
on SLD and SPB

SM1 mIoU mHD (mm) mPA

SLD 0.8735 0.2530 0.9479

SPB 0.7781 0.3507 0.8889

SM2

SLD 0.5768 0.8215 0.7422

SPB 0.6784 0.5556 0.8317

SM3

SLD 0.7299 0.3122 0.8235

SPB 0.8169 0.3139 0.9259

SM1, training with SLD; SM2, training with SPB; SM3, training with SLD and SPB.
mHD, mean hausdorff distance; mIoU, mean intersection over union; mPA, mean 
pixel accuracy; SLD, slit-lamp image dataset; SPB, smartphone-based dataset.
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Figure 2  Performance of SM1 and SM3 in pterygium grading (A–D) ROC curves, AUC and confusion matrices of the system in pterygium grading in 
SLD and SPB. (E-H) TROC curves, AUC, and confusion matrices in pterygium grading based on images of the same group of patients in SLDS and SPBS. 
Different coloured point clouds represent the different grades. AUC, area under the curve; SLD, slit-lamp image dataset; SPB, smartphone-based image 
dataset, SLDS, slit-lamp image from the same group of patients dataset; SPBS, smartphone-based image from the same group of patients dataset.
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SPBO for experts to detect pterygium symptoms, respectively. 
The experts got a 100% detection accuracy, and the model 
achieved a high accuracy (98.50%). AUC analysis and ROC 
are shown in figure 3A. Then, 90 images of pterygium in these 
200 samples were screened out as the test data to assess and 
grade and compare the performance differences between them. 
For the entire test without patient information, the referable 
microaverage F1 score, sensitivity, specificity, AUC and accuracy 
were 0.8971, 0.8129, 0.9445, 0.9543 and 93.91% from the 
ophthalmology experts, and 0.9248, 0.7569, 0.9624, 0.9385 
and 88.52% from the model (online supplemental table S5). The 
AUC analysis and ROC are shown in figure 3B. In the random 
sample of these results, our model’s performance is comparable 
to experienced ophthalmologists.

DISCUSSION
In this study, we aimed to achieve an early diagnosis of pterygium 
by fusion model, and we found that the model can effectively 
improve the accuracy of smartphone detection and grading of 
pterygium. Using 20 987 slit-lamp images and 1094 smartphone-
based images, the mAP, mIoU and mAcc of DM (trained by the 
slit-lamp image) were 0.9563, 0.9100 and 95.24% in detecting 
smartphone images. For the following segmentation and grading 
of pterygium, the fusion model (SM3) sensitivity for segment and 
grade of pterygium was 0.8709, and the specificity was 0.9668, 
demonstrating that SM3’s performance in smartphone images 
was excellent and close to that of the model SM1 in slit-lamp 
images. Moreover, our model performance was comparable to 
experienced ophthalmologists and had excellent performance 
across different smartphone brands.

A slit lamp is a fundamental tool for ophthalmic examination 
that can generate plentiful high-resolution images, which has 
been reported to use to detect pterygium by artificial intelligence 
in previous studies.16 17 Regrettably, as a specialised medical 
device relying on professional medical staff, the slit lamp is not 
always available in primary hospitals. Instead, the progress of 
informatisation in society endows smartphones with superb 
portability and universality in the general population.19 Besides 
being equipped with various sensors and high-definition cameras 
that enable the collection, transmission and processing of infor-
mation, smartphones can also generate photographs close to the 

quality of slit lamp images. In practice, however, as an unconven-
tional examination, the data collected by smartphones is difficult 
and of varying quality. Moreover, with no accumulation of data 
over many years and scarcely any publicly available standardised 
data sets, the accuracy of smartphone recognition would be 
unsatisfactory, which further lowers the enthusiasm of users, in a 
vicious circle, hinders the stability of data sources and ulteriorly 
influences the improvement of the model’s accuracy. Therefore, 
we hope to use the existing high-quality slit-lamp image data 
to solve the problem of insufficient high-quality smartphone 
data. Our fusion modelling method improved the accuracy of 
smartphone detection and grading, which can also be applied to 
other disciplines to overcome the quagmire lacking high-quality 
smartphone image data. Furthermore, this novel out-of-hospital 
diagnosis mode keeps people largely free from the restriction of 
time and space, which greatly saves patients' time, energy and 
economic resources. Most importantly, under the circumstance 
of the unbalanced distribution of medical resources, our study 
shed light on the timely diagnosis of pterygium in underdevel-
oped areas.

However, there are still several limitations to our study. First, 
our study only makes judgements based on image information, 
lacking other information such as medical history and symp-
toms. In the future, we will take the medical history and the 
symptoms into account and evaluate the colour, transparency 
and blood vessels of pterygium to develop a more accurate clas-
sification method.29 Second, we have established the standard 
of eligible images, according to which relevant image data are 
selected manually. In the future, we expect to build an automatic 
quality control system for future practical applications, which 
can exclude images that are not eyes or low quality by algo-
rithms rather than manual effort. Third, our study focused on 
identifying pterygium, and a clear sorting mechanism has not 
been established for other unidentifiable diseases. Therefore, we 
consider establishing a more complete recognition system for 
ocular surface diseases in the future.

In conclusion, under the situation of no existing mature mobile 
database, our fusion model method proves to be a powerful tool 
to improve pterygium detection and grading accuracy in insuf-
ficient smartphone data. The establishment of remote detection 
and grading of pterygium by smartphones relieves the pressure 

Figure 3  Comparison of the performance of SM3 and experts. (A) ROC curves and AUC of SM3 in pterygium detecting in SPBO. (B) ROC curves and 
AUC of SM3 in pterygium grading in SPBO. ‘Expert-Avg’ and ‘System-Avg’ indicates the average of the experts and system, respectively. Different 
coloured point clouds represent different experts. AUC, area under the curve. SPBO, smartphone-based image for ophthalmologists dataset.
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on hospitals, reduces the economic stress on the country and 
lowers the chance of infection, especially during the COVID-19 
epidemic. In addition, our new attempt can be applied to other 
diseases besides pterygium, especially in remote areas worldwide.
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